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Abstract

This article utilizes a Monte Carlo stochastic framework to investigate the influence on the mean and variance of the predicted mean pressure
head profile of statistical assumptions regarding the parameters that enter the mathematical description of the problem of infiltration in unsaturated,
heterogeneous layers. The parameters are treated as random functions with an exponential auto-covariance function expressing their spatial
continuity. Four different truncated distributions are taken to describe the parameters according to field observations and various phases of site
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haracterization campaigns. The exponential distribution is seen to produce the largest (in absolute value) mean and variance in the pressure head
rofile. For all distributions the variance in pressure head increases with increasing mean pressure. A second topic of this article is to investigate,
he relative importance of each parameter, in terms of the mean and the variance of the predicted pressure. For uniformly or triangularly distributed
arameters the saturated hydraulic conductivity appears to dominate the mean-behavior and the uncertainty in the system’s solution. For lognormally
r exponentially distributed parameters another parameter, the van Genuchten pore-size distribution index, is the dominant factor.

2005 Elsevier B.V. All rights reserved.
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. Introduction

One of the major tasks facing hazardous waste projects is to
ssess the critical components that influence the performance
f a system and which affect predictive capabilities. Prioritiza-
ion of the critical factors whose uncertainty reduction narrows
system’s output uncertainty is important at both the site char-

cterization and the modeling level. Such prioritization allows
he concentration of human and monetary resources on only
hose factors that critically influence a system’s predicted per-
ormance. The objective of this work is to illustrate, through the
nalysis of a physical problem of unsaturated flow in stratified,
eterogeneous media, how such concepts can be utilized to guide
ite characterization and modeling efforts. The focus is the quan-
ification of the effect of assumptions about the statistical struc-
ure of data on the prediction of pressure head profile as well as
he evaluation of the relative importance of three physical param-

∗ Corresponding author. Tel.: +1 803 777 8125.
E-mail address: epal@geol.sc.edu (E.K. Paleologos).

eters that enter the description of the problem. Field data from six
hydrogeologic units at the US Department of Energy repository
site of radioactive wastes at Yucca Mountain, Nevada, were uti-
lized. The physical problem is characterized by three parameters
exhibiting both spatial variability and uncertainty in their val-
ues: the Ks, the saturated hydraulic conductivity; the α, the van
Genuchten air-entry scaling parameter; and β the van Genuchten
pore-size distribution index parameter that enter into the govern-
ing nonlinear equations. The main objective of this study is to
investigate the effect of the parameters’ probability distribution
functions on the prediction of the pressure head profile. This
issue arises from the limitation in data for many earth studies,
which as a consequence allows several probability distribution
models to fit the data. In addition, for large projects where sev-
eral site characterization campaigns are conducted over time, the
statistical description of the data at each distinct site characteri-
zation phase may vary and hence the modeling efforts (and pre-
dictions) that correspond to these data collection phases may rely
on different or evolving assumptions. The ranking of the three
physical parameters relative to their influence on the mean and
variance of pressure head is the second focal point of this article.
304-3894/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.jhazmat.2005.11.040
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The article proceeds as follows. Section 2 provides a literature
review of the sensitivity, and uncertainty methodologies as well
as of the measures that have been used to evaluate a system’s
components and their influence on its performance. Section 3
discusses the physical problem and provides the mathematical
and numerical framework of the study. This section also presents
the sensitivity and uncertainty analysis and the relative impor-
tance measures that were used to rank each parameter towards
the predicted pressure head profile. Finally, Section 4 presents
the results and conclusions of this study.

2. Background

In broad terms several distinct analyses can be conducted
at hazardous waste sites. Uncertainty analyses involve deter-
mining the uncertainty in model predictions, which results from
imprecisely known variables or parameters. Sensitivity analy-
ses are used to study the behavior of a system, or a model, and
ascertain how much the outputs depend on each of the input
parameters. Importance analyses’ measures are usually applied
to systems whose functionality is modeled as success or fail-
ure and whose components are modeled in one of two binary
states. Decision analyses identify the best alternative from a
suite of available alternatives. The main elements of decision
analyses are the action space that contains all available alter-
natives, the state of nature that is governed by uncertainty (for
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the standard deviation of R with respect to the standard deviation
of Yi. Certain other sensitivity factors obtained from first- and
second-order reliability methods have proceeded with the trans-
formation of the coordinates of a design vector Y into a normal
space U and using minimum distance concepts to define a safety
index β, as the minimum distance from the origin to the limit
state function in u-space. Importance factors and sensitivity of
the cumulative distribution function of a response R to a statis-
tical parameter (e.g. mean or standard deviation) are defined on
the transformed space.

Homma and Saltelli [3] developed a global sensitivity analy-
sis (SA) method of nonlinear models that is based on measures of
importance that account for the fractional contribution of input
parameters to the variance of the model prediction. Global SA
focuses on output uncertainty over the entire range of values
of input parameters. These authors’ measures of importance
were based on the conditional variance of model output that
corresponds to parameters set at fixed values. Good reviews
of global SA methods, which include the Monte Carlo based
regression–correlation measures, the Fourier amplitude sensi-
tivity test (FAST), and various forms of differential analysis
can be found in Helton [4]. The concept of regional sensi-
tivity analysis (RSA) can be summarized as follows [5]: a
model G contains a set of constant parameters x and a set
of inputs z which together produce an output y. Uncertainty
and/or variability in the parameters is described by assigning
t
t
f
s
n
t
p
s

2

i
e
w
o
w
s
c

2

i
o

2

a
(
e

xample, uncertainties in the estimates of transmissivity, stora-
ivity, etc.), and the consequences of different actions, which
ncludes benefits and costs. The distinction between the differ-
nt types of analysis in most studies is not rigid, and several
uthors have utilized or developed approaches that encompass
lements from more than one type of analysis. For example, Ma
1] combined Monte Carlo simulation to propagate parameter
ncertainty and elements of sensitivity and importance anal-
ses to reach remediation decisions at a groundwater site in
aiwan. The methodology utilized in the current study pro-
eeds in this spirit by combining Monte Carlo simulations
ith elements of uncertainty, sensitivity and relative importance

nalyses.

.1. Sensitivity analyses

A number of ranking measures have been used in several
cientific and engineering fields and can be tested for their appli-
ability in surface–subsurface hydrologic systems. Mansour and
irsching [2] provided sensitivity and reliability indices appro-

riate for strength and fatigue considerations in extreme loading
onditions on ships. These authors provided an overview of sen-
itivity factors in structural reliability methods. In general, a
eterministic sensitivity factor Si of a response variable R that
s a function of a vector, Y, of design factors Yi, i = 1, . . ., n, is
efined as the change in R with respect to a change in Y at a
eference value Y = Y0. One can consider also probabilistic sen-
itivity factors for a response variable R = R(Y), where Y is now a
andom vector. A reliability-based sensitivity factor, which mea-
ures the degree of response uncertainty as a function of input
ncertainty, is commonly obtained by evaluating the change in
o each element of x a statistical distribution function which,
aken together, constitute a multivariate distribution function
. This assignment results in an ensemble of models, each of
tructure G, and with a parameter vector, which is a random
umber of the multivariate distribution f. The goal is to ascer-
ain which elements of the parameter vector are important in
roducing simulations that mimic the essential features of the
ystem.

.2. Importance analyses

For ranking basic events there are several commonly used
mportance measures [6]. If one designates by R0 the base (ref-
rence) case overall model risk, by R+

i the overall model risk
ith probability of a basic event set to 1 (the event has occurred
r the equipment has failed), and by R−

i the overall model risk
ith the probability of basic event set to 0 (the event is impos-

ible or the equipment is totally reliable) then several measures
an be utilized.

.2.1. Risk achievement worth
ai = R+

i /R0, presents a measure of the worth of a basic event
n achieving the present level of risk and indicates the importance
f maintaining the current level of reliability for a basic event.

.2.2. Risk reduction worth
ri = R0/R

−
i , represents the maximum decrease in risk by

n improvement to an element associated with a basic event
i.e. useful for identifying improvements to the reliability of
lements, which mostly reduce risk).
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2.2.3. Fussell–Vesely
FVi = (R0 − R−

i )R0 = 1 − (R−
i /R0), is a measure of the

fractional contribution of the basic event to the overall model
risk when the basic event probability is changed from its base
value to 0.

2.2.4. Birnbaum Importance (or reliability importance)
IB = R+

i − R−
i , is an interval risk importance measure,

which is completely dependent on the structure of the system
model and is independent of the current probability of the basic
event.

2.2.5. Criticality importance
Icr = (R+

i − R−
i )Pi,0/R0 = IBPi,0/R0, where, Pi,0 = proba-

bility of basic event I at its reference value.
Traditionally, importance measures are based on frequency

of failure. Eisenberg and Sagar [6] proposed measures intended
to be more suitable to systems comprised of components whose
behavior is most naturally represented as continuous rather than
binary. These authors considered systems whose performance
measure, Y, is positive and increases with poorer performance
and where regulatory standards limit the magnitude of Y. For
XK random input parameters that are described by appropriate
probability distributions, Y = Y(XK) is a random variable. If the
nominal system performance is Sy and the system performance
where a component is neutralized is −U , where the convention
“
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sion analysis tools such as Influence Diagrams (IDs), Analytical
Hierarchy Process (AHP), and Multi Attribute Utility Theory
(MAUT). They used a global performance index, which was a
weighted combination of the utility functions of the individual
performance measures. They assessed the weights through the
hierarchical structure of the ID and by means of the pairwise
comparison method of the AHP. These weights represented the
direct importance of the performance measures with respect to
the overall top goal of the hierarchy, and were obtained by multi-
plying the intermediate weights through the various branches of
the hierarchy tree. For the determination of the single-attribute
utilities these authors employed AHP combined with elements
of fuzzy logic.

Weil and Apostolakis [10] developed a prioritization method-
ology that utilized multi-attribute utility theory with emphasis
on deliberations to achieve consensus among objectives and
preferences among those objectives. They assigned a numer-
ical performance index to each item requiring prioritization.
The item with the highest numerical score received the high-
est priority. The performance index (PI) was the sum of the
weights of individual performance measures (PM) multiplied
by the utilities of each item for that particular PM. The purpose
of the performance measures was to relate some measurable
quantity, representing an attribute from the item, to the funda-
mental objectives. Their procedure to calculate the performance
index had the following steps: (i) structure the objectives (eco-
n
p
m
(

3

h
s
a
o
w
g
w
i
a
g
o
(
u
t
i
f
n
o
2
o
n
w
d

y

−U” indicates that the component functions are to be neutral-
zed, these authors considered four importance measures that
ere ratios of −Uy and Sy.

.3. Uncertainty analyses

Protopapas and Bras [7] and Ricotti and Zio [8] investigated
nput uncertainty that refers to incomplete knowledge of model
nputs, including model parameters. Suppose that for a model

the prediction y is determined by a vector of input variables
of length p (or parameter vector θ), y = m(x). The probability
istribution fx of the input variables x induces on y the probability
istribution fy, i.e., x ∼ fx(x), y ∼ fy(y). A subset of input variables
s xs (control variables) and xs̄ is the complementary input subset
ariables (noise variables).

The model prediction based on subset xs of the input variables
s: ỹ = E(y|xs). The model prediction based on xs and xs̄ is:
= ỹ + (y − ỹ) = E(y|xs) + e(xs̄|xs), where the first term rep-

esents the average fixed value we expect for y due to the control
ariables xs and the second term represents the random residual
r error component due to the noise variables xs̄. The authors’
bjective was to find a small subset of the xs for which their
redictor ỹ is a good approximation to the full model prediction
. A way to measure the quality of a predictor is the quadratic
oss function: L = (y − ỹ)2, with E(L) the mean squared error
MSE) of the prediction. Their method relates the importance of
he set xs to its predictive ability (locally at a specified value of
s) by the L and globally averaged over values of xs by the E(L).

Zio and Apostolakis [9] applied sensitivity and uncertainty
nalysis techniques to evaluate environmental restoration tech-
ologies. Their methodology integrated several standard deci-
omical, safety, environment, etc.); (ii) determine appropriate
erformance measures; (iii) weigh objectives and performance
easures; (iv) assess utility functions of performance measures;

v) perform consistency checks; (vi) validate the results.

. Physical problem

The study considers the physical problem of infiltration in
eterogeneous, unsaturated porous layers of a typical cross-
ection at the US Department of Energy site of radioactive wastes
t Yucca Mountain, Nevada. The site was formed by a series
f volcanic eruptions that deposited ash and other material that
ere compressed over time to create layers of tuff. As a result the
eologic environment is comprised of a series of heterogeneous
elded and non-welded silicic airfall and ash flow tuffs, the cool-

ng and crystallization of which determined their mechanical
nd hydrologic properties. The geologic formations have been
rouped into hydrogeologic units based, largely, on the degree
f welding. In general, welded units have low matrix porosities
of the order of 10%) and high fracture densities. Non-welded
nits have higher matrix porosities (about 30%) and low frac-
ure densities [11]. The hydrogeologic units that are considered
n most unsaturated flow analyses as well as in this study are,
rom top to bottom: the Tiva Canyon welded (TCw) with a thick-
ess of 81 m, the Paintbrush nonwelded (PTn) with a thickness
f 39 m, the Topopah Spring welded (TSw) with a thickness of
99 m, the Topopah Spring vitrophyre (TSv) with a thickness
f 15 m, the Calico Hills nonwelded-vitric (CHnv) with a thick-
ess of 64 m, and the Calico Hills nonwelded-zeolitic (CHnz)
ith a thickness of 127 m [12,13]. The units exhibit significant
ifferences in their properties [14] and hydraulic behaviors, and



140 E.K. Paleologos et al. / Journal of Hazardous Materials 136 (2006) 137–143

data that were available for this study included the thickness of
layers, the means and standard deviations, and the range of the
parameters.

3.1. Conceptual model

Assuming, as is commonly done [14–17], that the infiltration
rate is constant at the site, and that steady-state conditions have
been attained, the hydrologic state between the ground surface
and the water table (pressure head and saturation against depth)
can be described by Richard’s equation and the van Genuchten
[18] relation for the unsaturated hydraulic conductivity. The
specific discharge for one-dimensional, steady state, vertical
infiltration is given by:

q = −K(hp)

(
dhp

dz
+ 1

)
(1)

where hp is the pressure head (negative when the soil is unsat-
urated), z is the vertical Cartesian coordinate (positive upward),
K(hp) is the unsaturated hydraulic conductivity (a function of
the pressure head), and q is the infiltration. The unsaturated
hydraulic conductivity is expressed through the van Genuchten
relation [18]

K(hp) = Ks(1 + ∣∣αhp
∣∣β)

−(1−β−1)/2
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Fig. 1. Comparison of deterministic numerical results (this study) and Reeves
et al. [19].

above numerical procedure was compared with the results by
Reeves et al. [19] using the same fixed (deterministic) values for
the parameters Ks, α, and β for each layer [20] of the stratigra-
phy that was used by these authors. Fig. 1 shows an excellent
agreement between the results of this study and Reeves et al.
[19].

3.2. Modeling of heterogeneity and ranking procedure

Parameters Ks, α, and β were considered in the study as ran-
dom variables that follow the same probability distribution. The
distributions used for the parameters in the analysis were: the
lognormal, the exponential, the uniform, and the triangular. The
lognormal distribution was chosen because it has been shown to
fit data at several sites [21–24]. The exponential distribution is
appropriate for cases where low values of a parameter (relative
to the mean) are expected to occur more often than larger values.
This can be the result of material changes from coarser to finer
texture, sands of the same grain size but of a stronger cementa-
tion in a part of a system than another, a sand–shale system with
higher percentage of shale than sand, etc. The uniform distri-
bution was chosen because it describes the (common) situation
where one might have knowledge of only the range within which
a parameter lies, and the triangular because it represents the case
where, in addition to the minimum and maximum values, one
m
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⎝1 −

[ ∣∣αhp
∣∣β

1 + ∣∣αhp
∣∣β

]1−β−1⎞
⎠

2

(2)

ere Ks is the saturated hydraulic conductivity, α, is the
an Genuchten air-entry scaling parameter; and β is the van
enuchten pore-size distribution index parameter. Eq. (1) can
e easily rewritten as
hp1

hp0

K(hp) dhp

(K(hp) + q)
= −(z1 − z0) = −�z (3)

here hp0 corresponds to elevation z0 (taken to be the water
able) and hp1 the pressure at an arbitrary point of elevation z1.
he one-dimensional flow domain was discretized into elements
f length 0.1 m for a total of 6250 nodes. The constant infiltra-
ion rate was taken to be 0.1 mm/yr, a value that is considered to
e representative of the conditions at the site [14]. Eq. (3) was
olved numerically, using an iterative procedure that was based
n a Newton–Cotes 9-point scheme, as follows. Starting from
he water table (z0 = 0 and h0 = 0) the solution of h1 at a distance
f �z = 0.1 m is sought. An arbitrary value of h0

1 is selected
hich together with the van Genuchten relation determines the

ntegral at the left-hand side of Eq. (3). The value of the inte-
ral is compared to the right-hand side value of −0.1 m and h0

1
s corrected by a quantity that depends on the residual error of
q. (3). The procedure is repeated until a value of h1 is found
uch that the residual error of Eq. (3) is smaller than 0.001 m.
his value of pressure is the solution for point z1 = 0.1 m and

he procedure advances by assigning these values as the new,
tarting elevation and pressure and seeking to find the solution
or pressure at a distance of 0.2 m from the water table. The
ight have information about the most commonly occurring
alue. The last two cases correspond to the very initial stages
f a characterization and modeling study where only geologic
nd other background information may be available for a site
llowing only inference of ranges and likely values of the param-
ters. The cases of lognormal and exponential correspond to a
ite characterization phase where detailed data collection has
aken place allowing detailed statistical description of the data.
ne should notice that the following discussion and arguments

an also be interpreted in a Bayesian decision-making frame-
ork where increase of information may result in changes in

he ranking of importance of different uncertain components of
physical system, and hence, in re-evaluation of site character-

zation and modeling priorities of a study.
Truncated forms of the distributions were used with the min-

mum and maximum values of the parameters providing the
runcation limits of the distributions. The generated distributions
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had means and variances that equalled the values for mean and
variance of the parameters from the available data. The param-
eters were considered to be spatially correlated following an
exponential covariance model with identical correlation lengths
λ. Three cases of correlations lengths equal to λ = 1 m, λ = 0.3 m,
and λ = 3 m were investigated. These values are considered to
be representative of the site and have been used in other stud-
ies at the Yucca Mountain project [25]. Data that can allow the
determination of cross-correlation functional relations are rarely
available and two extreme cases of cross-correlation between Ks,
α, and β were studied: (i) uncorrelated parameters, i.e., knowl-
edge of one parameter does not provide information on the other
two parameters, and (ii) perfectly correlated parameters, i.e., if
one parameter takes a min (or max) value then the other two also
take a min (or max) value. The random field generator used to
generate values for Ks, α, and β that honor the above statistics
and to perform the Monte Carlo simulations was based on the
Simulated Annealing Method [26].

By selecting a triplet of values from a specific distribution i
for the parameter set (Ks, α, β) for each point of the grid and
by performing a series of Monte Carlo computations with N
total selections one can create N pressure head hp-profiles. At
each discretization point of the grid with a coordinate z one can
then average the N equiprobable values of hp to obtain the mean
capillary head 〈hp(z)〉i and the variance of hp, σ2

i , that applies to
this point for a specific distribution i:

〈
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tively, of each parameter k for every distribution i:

RI〈hp〉
i,k = 〈hp〉i,k∑3

k=1〈hp〉i,k
, RIσ

2

i,k = σ2
i,k∑3

k=1σ
2
i,k

(6)

This way one can determine for a given range of variation
of the parameters, which parameter controls uncertainty in the
pressure head. Clearly, this process can be repeated for all dis-
tributions i and then, for each parameter k, one can calculate the
relative importance toward the mean and variance:

RI〈hp〉
k =

∑4
i=1〈hp〉i,k∑4

i=1
∑3

k=1〈hp〉i,k
, RIσ

2

k =
∑4

i=1σ
2
i,k∑4

i=1
∑3

k=1σ
2
i,k

(7)

irrespective of distribution. Thus, the above expressions can
provide a ranking of the importance of each parameter in the
evaluation of the mean and variance of the pressure head for a
specific distribution, and irrespective of the choice of distribu-
tion [27].

4. Results and conclusions

The framework detailed in the previous section was used to
analyze the influence of controlling parameters in problems of
infiltration in heterogeneous soils. The parameters (K , α, and
β
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hp(z)〉
i
= 1

N

N∑
j=1

hpj
, σ2

i = 1

N − 1

N∑
j=1

(hp − 〈hp(z)〉
i
)2

(4)

ere 〈 〉 denotes ensemble averaging. Now one can calculate, at
ach point z, the global mean 〈hp(z)〉G, defined as the arithmetic
ean of the expected values from the four distributions, as well

s the global variance 〈σ2〉G, defined as the arithmetic mean of
he variances obtained from each distribution:

hp〉G = 1

4

4∑
i=1

〈hp(z)〉
i
, 〈σ2〉G = 1

4

4∑
i=1

σ2
i (5)

y calculating the quantity 〈ρ2〉T = 1
4

∑4
i=1(〈hp(z)〉

i
− 〈hp〉G)2

ne can obtain at each point the divergence of the distributions
eans from the global mean. Then the total uncertainty on the

lobal mean 〈hp(z)〉G, can be obtained at each point by σ2
T =

ρ2〉T + 〈σ2〉G. Here 〈ρ2〉T is a measure of the uncertainty in
he mean hp behavior because of the uncertainty in the type
f distribution, and 〈σ2〉G is the average fluctuation around the
ean hp-behavior irrespective of distribution.
Assume now that out of the three parameters Ks, α, and β one

olds two at their mean values, and varies the third according
o a distribution i. By performing Monte Carlo simulations one
an obtain 〈hp〉i,k the mean pressure head, and σ2

i,k the vari-
nce of the pressure head, due to the fluctuations in the kth
andom parameter according to an ith distribution. By repeating
he procedure for all parameters the relative importance can be
valuated towards the mean pressure head and variance, respec-
s
) that enter the van Genuchten expression for the unsaturated
ydraulic conductivity, Eq. (2), were modeled as random func-
ions with means, coefficients of variation and ranges obtained
rom field data. The spatial auto-correlation of the parameters
as described by an exponential model and the results for a cor-

elation length equal to λ = 1 m are presented here. The numeri-
al calculations were performed using the Simulated Annealing
enerating Method and for each parameter and each distribu-

ion 500 Monte Carlo simulations were conducted. The results
hown here correspond to absence of cross-correlation between
he parameters (case I).

Figs. 2 and 3 plot the mean pressure head profile 〈hp〉 and the
ariance about this profile, respectively, for parameters with a
orrelation length equal to λ = 1 m. The exponential distribution
roduced a mean and variance in the pressure-head profile that
as significantly larger than of any other statistical model, in

ll layers. The lognormal distribution produced the smallest (in
bsolute value) mean pressure head profile in the CHnz, TSw,
nd TCw layers whereas the uniform distribution produced the
mallest (in absolute value) mean pressure head in the remain-
ng layers. These results can be explained by the preference of
he exponential model to select lower Ks values than any other
istribution, which given the inverse relation between pressure
ead and Ks leads (all other factors being equal) the exponential
odel to produce the largest (absolutely) pressure head. It is

nteresting to note that the results for the variance are perhaps
ounter-intuitive with regards to the uniform and triangular dis-
ributions where because of the lack of knowledge that these
istributions imply one might have expected them to produce
he largest variances. Figs. 2 and 3 indicate that irrespective of
istribution type the variance in pressure head increases with
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Fig. 2. Mean pressure head profiles (case I, λ = 1 m): dependence on distribution.

increasing (in absolute terms) mean pressure. This is in agree-
ment with the conclusions by Yeh et al. [28], field observations
by Yeh et al. [29], laboratory investigations by Wildenschild and
Jensen [30], and the analytical results by Yeh [15]. The depen-
dence of the mean and variance of the pressure-head on the

F
t

Fig. 4. Total system, λ = 1 m: relative importance of each parameter for each
distribution toward the mean pressure, Eq. (6).

distribution model indicates that limiting the parameters’ sta-
tistical description to a few moments only is not sufficient for
accurate flow prediction but the functional form of the probabil-
ity distribution needs to be unequivocally resolved.

In order to simplify the depiction of the results for the relative
importance of the parameters the detailed mean (and variance)
point profiles were averaged over the six layers for each dis-
tribution. This lumping of the results over the total system is
customarily done in studies of total system performance assess-
ments [14] where the hydraulic behavior is one component of
a system’s response that may include, geochemical, mechani-
cal, biological and other considerations. Details of the relative
importance of the parameters for individual layers are provided
in Avanidou [20]. Figs. 4 and 5 plot the relative importance of
each parameter toward the mean and the variance of the pressure
head for each distribution, Eq. (6). For parameters following a
triangular or uniform distribution, uncertainty in Ks is the main
contributor to total system uncertainty (about 67% for the mean
and between 55% and 67% contribution for the variance), with
β being the second dominant (about 27% toward the mean and
30–40% contribution toward the variance) and α being the third

F
d

ig. 3. Variance of pressure head profiles (case I, λ = 1 m): dependence on dis-
ribution.
ig. 5. Total system, λ = 1 m: relative importance of each parameter for each
istribution toward the variance of the pressure, Eq. (6).
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factor in terms of importance. For the lognormal and expo-
nential distributions β becomes the most dominant parameter
towards both the mean and the variance of the pressure head
profile with Ks and α being, approximately, equally important.
Overall it appears that for total system analyses the saturated
hydraulic conductivity and the pore-size distribution index need
to be treated as stochastic parameters with the exact statistical
model clearly defined in order to establish the correct hydraulic
behavior, whereas α can, perhaps, for the cases of triangular and
uniform distributions, be treated as a deterministic parameter.
Our results agree with those by Chen et al. [31,32] about the
importance of the saturated hydraulic conductivity in unsatu-
rated flow predictions. They also agree with those by Boateng
and Cawlfield [24] on the importance of the β parameter but do
not support these authors’ conclusion that the saturated hydraulic
conductivity can be considered as a deterministic variable with
no significant effect on the probability outcome. Finally, our
results for the lognormal distribution agree with the conclusions
by Mishra et al. [33] about the importance of β and Ks rather
than α on pressure head. In terms of a site characterization cam-
paign some guidelines that can be advanced based on our results
are that there needs to be a clear delineation of the statistical
structure of the data, which is not limited to a few moments only
but extends to clarification of the exact distribution, and that in
the presence of limiting resources emphasis should, perhaps, be
given initially to characterization of K and β.
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